
All Rights Reserved © 2024

High Performance Storage
Solution for Virtual
Environment on Xinnor RAID
Engine and Kioxia PCIe 5.0
Drives

Contents
1. Introduction...

2. Objective of Testing...

3. Testing Environment...

4. Setting up xiRAID Opus for VM Infrastructure................

5. Test Configuration Overview..

6. Test Results...

7. xiRAID Opus Overview...

8. Summary...

Appendix 1: Fio Configurations...

Appendix 2: mdraid Configuration......................................

2

2

2

4

4

4

6

6

7

7

High Performance Storage Solution for Virtual Environment on Xinnor RAID Engine and Kioxia PCIe 5.0 Drives 1

All Rights Reserved © 2024

1. Introduction
SSDs continue to advance in speed, particularly with the
market shift to NVMe™ PCIe® 5.0 SSDs. With this
technology, a single SSD can now achieve remarkable
sequential read speeds of up to 14GB/s and sequential
write speeds of 7GB/s, along with handling millions of
Input/Output per second (IOps). In modern servers, it is
common to find 24 or more of these high-performance
SSDs. Given that a single application may not fully utilize
such high performance, multiple virtual machines often
run on the same system. Therefore, ensuring protection
against drive failures and maintaining stable
performance with low latency becomes increasingly
crucial, especially for handling mission-critical
applications.

Сloud services (public and private) rely on a software-
defined approach, enabling them to deploy resources on
demand when it matters. In this research, we will
consider two options for creating a software RAID array
and using it as storage resources for virtual machines.

3. Testing Environment
Hardware Configuration

 Motherboard: Supermicro H13DS

 CPU: Dual AMD EPYC 9534 64-Core Processor

 Memory: 773,672 M

 Drives: 10 x 3.20 TB KIOXIA CM7 Series Enterprise
NVMe SSDs (KCMYXVUG3T20)

Software Configuration

 OS: Ubuntu 22.04.3 LT

 Kernel: Version 5.15.0-91-generi

 xiRAID Opus: Version xnr-85

 QEMU Emulator: Version 6.2.0

RAID Configuration:

To avoid intra-NUMA communication, we created two
RAID groups (4+1 configuration), each utilizing drives
from a single NUMA. The stripe size was set to 64K. A
full RAID initialization was conducted prior to
benchmarking.

Each RAID group was divided into 8 segments, with each
segment being allocated to a virtual machine via a
dedicated vhost controller.

Summary of Resources Allocated

 RAID Groups:

 Volumes: 1

 vhost Controllers: 1

 VMs: 16, with each using segmented RAID volumes
as storage devices.

Figure 2. Distribution of virtual machines, vhost controllers, RAID groups
and NVMe drives

The CPUs have 8 Core Complex Die (CCDs), with each
CCD containing 8 ZEN cores with shared L3 cache.

High Performance Storage Solution for Virtual Environment on Xinnor RAID Engine and Kioxia PCIe 5.0 Drives 2

2. Objective of Testing
The aim of this testing is to assess the applicability of
software RAID arrays with high-performance NVMe
drives, using the created volumes for virtual machines
requiring fast storage.

We plan to demonstrate the scalability of the solution
and provide an assessment of the test results. Two
methods of creating software RAID arrays will be
considered: 1) mdraid configured for optimal
performance with NVMe SSDs, operating in the Linux
kernel space, and 2) a commercial product by Xinnor
(xiRAID Opus), operating in the user space.

The created volumes are exported to virtual machines
using vhost interface. The vhost target is a process
running on the host machine and is capable of exposing
virtualized block devices to QEMU instances or other
arbitrary processes.

Figure 1. vhost operation scheme

For mdraid, we utilized the kernel vhost target and
configured it using the targrtcli utility. xiRAID SPDK has
a built-in target that operates in user space.

All Rights Reserved © 2024

High Performance Storage Solution for Virtual Environment on Xinnor RAID Engine and Kioxia PCIe 5.0 Drives 3

The proper allocation of resources across cores is a
crucial component in achieving high performance. One
of the feature of xiRAID Opus is to allow the user to
specify which cores will be dedicated to run the
applications.

Placing VMs and their corresponding vhost controllers
on the same CCD is a way to enhance performance by
reducing latency and improving data throughput. This is
because it takes advantage of the direct and faster
communication paths within the same CCD, as opposed
to across different CCDs, which can be slower due to
inter-CCD communication overhead. This approach is
especially beneficial in systems where VMs require high-
speed data processing and minimal latency.

Figure 4. Distribution of resources across CCD cores

Virtual Machine Configuration

The configuration differs when utilizing xiRAID Opus and
mdraid. In case of xiRAID Opus, specific cores can be
allocated, while the remaining cores are utilized by the
virtual machines. When operating in the kernel space
with mdraid, it is not possible to allocate specific cores;
instead, all cores are used concurrently for both storage
infrastructure and virtual machines.

CPU Allocation: 6/8 vCPUs are designated per VM,
directly corresponding to the host server's physical CPU
cores. Process-to-core affinity is managed with the
taskset utility to optimize performance.

QEMU CPU Configuration:

-cpu host -smp 6 / 8

QEMU Memory Configuration:

Memory Allocation: Each VM is provisioned with 16 GB
of RAM via Hugepages. Memory is pre-allocated and
bound to the same NUMA node as the allocated vCPUs
to ensure efficient CPU-memory interaction.

-m 16G -object memory-backend-
file,id=mem,size=16G,mem-path=/dev/
hugepages,share=on,prealloc=yes,host-
nodes=0,policy=bind

 Operating System: The VMs run Debian GNU/Linux
12 (Bookworm

 Benchmarking Tool: The 'fio' tool, version 3.33

Figure 3. 8 CCD Configuration

All Rights Reserved © 2024

High Performance Storage Solution for Virtual Environment on Xinnor RAID Engine and Kioxia PCIe 5.0 Drives 4

 Small, random read operations (4KiB
 Small, random write operations (4KiB
 Mixed random I/O with a read-write ratio of 70:30

(4KiB
 Large, sequential read operations (1MiB
 Large, sequential write operations (1MiB)

These workloads simulate a range of scenarios to
provide a comprehensive understanding of the system's
performance characteristics.

6. Test Results
Small Random Operations Test Results

Random Operations Performance, K IOps

Operation xiRAID 1 VM (6
Cores), 2

Cores for RAID

mdraid

1 VM  

(8 Cores)

xiRAID 16 VMs
(6 Cores each),

32 Cores for
RAID

mdraid

16 VMs  

(8 Cores each)

Random Read
(4KiB) 1,985 308 23,112 4,176

Random Write
(4KiB) 710 154 2,988 768

Mixed I/O
(70:30, 4KiB) 810 / 347 160 / 69 7,088 / 2,960 1,336 / 572

Degraded
Random Read
(4KiB)

1,400 173 17376 766

Random Operations Efficiency (16 VMs)

The efficiency is calculated by comparing the RAID
performance with the theoretical performance of 10
drives. Each drive is capable of 2.7 M IOps random read,
0.7 M IOps random write.

Operation xiRAID mdraid

Random Read (4KiB) 86% 15%

Random Write (4KiB) 65% 22%

Degraded Random Read (4KiB) 80% 4%

Mean Latency, µs

Operation xiRAID 1 VM (6
Cores), 2

Cores for RAID

mdraid

1 VM  

(8 Cores)

xiRAID 16 VMs
(6 Cores each),

32 Cores for
RAID

mdraid

16 VMs  

(8 Cores each)

Random Read
(4KiB) 98 623 140 736

Random Write
(4KiB) 270 1,242 1,082 3,955

Mixed I/O
(70:30, 4KiB) 143 / 216 798 / 931 194 / 579 1,217 / 2,522

Degraded
Random Read
(4KiB)

137 1,107 176 3,950

4. Setting up xiRAID Opus  
for VM Infrastructure
In this section, we will briefly outline the steps required
to create an array, volumes, and export them to a virtual
machine. For detailed instructions, please refer to the
manual.

Launch Command:

Running an application with a 300GB HugePage on a
NumaNode and utilizing 2 cores on each CCD.

xnr_xiraid --xnr-hugemem=300000,300000 -m
0x81818181818181818181818181

RAID Creation Steps

 Drive Attachment: Attach drives using the xnr_cli
drive-manager

 RAID Creation: Create a RAID array with the
following command:

raid create -n vhost -l 5 -s 64 -d
0000:01:00.0n1,0000:03:00.0n1,0000:05:00.0n1,0000:
07:00.0n1,0000:41:00.0n1

 Initialization: Wait for the RAID initialization process
to complete

 Volume Creation: Create 8 volumes per RAID using
the script:

/root/spdk/scripts/rpc.py bdev_split_create vhost
8 -s 512000

‘-s’ means each volume size

 Volume Exporting: Export volumes via a vhost
controller with the command (to be implemented for
each controller):

xnr_cli vhost-blk create -c vhost.0 -d vhostp0 -C
[0,7]

…

‘-c’ is a mask used to launch specific target

5. Test Configuration Overview
The objective of this test scenario was to evaluate the
cumulative performance of virtual machines (VMs)
utilizing Vhost target and to assess the scalability of I/O
operations across multiple CPU cores. The assessment
involved conducting tests with both a single VM and a
group of 16 VMs. Each VM executed a series of FIO
benchmarks to measure I/O performance under various
workload conditions, including:

All Rights Reserved © 2024

High Performance Storage Solution for Virtual Environment on Xinnor RAID Engine and Kioxia PCIe 5.0 Drives 5

99,95 Latency, µs

Operation xiRAID 1 VM (6
Cores), 2

Cores for RAID

mdraid

1 VM  

(8 Cores)

xiRAID 16 VMs
(6 Cores each),

32 Cores for
RAID

mdraid

16 VMs  

(8 Cores each)

Random Read
(4KiB) 188 1,385 388 1,467

Random Write
(4KiB) 1,549 2,507 6,132 20,579

Mixed I/O
(70:30, 4KiB) 1,090 / 1,221 1,745 / 2,024 1,876 / 5,412 5,538 / 9,372

Degraded
Random Read
(4KiB)

255 2,180 766 19,820

Outcomes

Random Reads

In the observed results, each RAID configuration is
capable of delivering close to one million IOps per core,
while maintaining a notably low latency. The results are
exceptional, especially for latency-sensitive applications:
the single-VM RAID setup achieved latency levels below
100 microseconds, with the 99.95th percentile latency
remaining under 200 microseconds. These figures are
indicative of superior performance, demonstrating the
system's capability to handle intensive workloads with
minimal delay.

Upon scaling, the performances decline by
approximately 30% due to fio tool consuming all
available CPU resources. This indicates a trade-off
between scaling and CPU availability, with the latter
becoming a limiting factor under extensive load
conditions.

Random Writes

While write performance in RAID implementation are
impacted by the necessary additional read-modify-write
operations, the results show that xiRAID is 4 times more
efficient then MDRAID.

As expected, in writing the scaling losses are more
pronounced as the additional read-modify-write cycles
increase resource contention with the fio processes. This
effect is especially noticeable in scaled-up
configurations where numerous VMs are competing for
the same CPU resources.

Degraded Mode

xiRAID performance in degraded mode for read
operations are 20X better versus MDRAID, displaying
minimal performance loss and only a slight increase in
latency. This robustness in degraded mode is
particularly advantageous for applications where
consistent read performance is critical, even in the event
of partial system failure or maintenance scenarios.

Mdraid and the kernel space target demonstrate
significantly lower efficiency levels, making them less
economically viable.

Sequential Operations Test Results

Sequential Operations Performance, K IOps

Operation xiRAID 1 VM (6
Cores), 2

Cores for RAID

mdraid

1 VM  

(8 Cores)

xiRAID 16 VMs
(6 Cores each),

32 Cores for
RAID

mdraid

16 VMs  

(8 Cores each)

1M Sequential
Read 55.9 29.3 116 108

1M Sequential
Write 17 5.8 50 10.2

1M Sequential
Read
Degraded

41.8 4 99.2 8

Sequential Operations Efficiency (16 VMs)

The efficiency is calculated by comparing with
theoretical performance of 10 drives with the following
measured single drive performance: 14 GB/s at
sequential read, 6.75 GB/s at sequential write.

Operation xiRAID mdraid

1M Sequential Read 83% 77%

1M Sequential Write (4KiB) 93% 19%

1M Sequential Read Degraded 89% 7%

Outcomes

The performance of the sequential operations closely
approaches the theoretical maximum and remains at
high even in degraded modes. This robustness allows for
the deployment of data-intensive applications within a
virtual infrastructure, ensuring they can operate
efficiently without significant performance penalties,
even in suboptimal conditions.

The performance of sequential degraded read and
sequential write on mdraid significantly lags behind
xiRAID, even in small-scale installations, making the
solution unsuitable for performance-sensitive
applications.

All Rights Reserved © 2024

High Performance Storage Solution for Virtual Environment on Xinnor RAID Engine and Kioxia PCIe 5.0 Drives 6

7. xiRAID Opus Overview
xiRAID Opus (Optimized Performance in User Space) is
the user space version of xiRIAD software RAID engine.
It leverages the SPDK (Storage Performance
Development Kit) libraries to move outside of linux
Kernel to allow customers not to be concerned
regarding Linux Kernel versions, bypassing the update
process. This architecture grants full CPU control,
facilitating straightforward execution with affinity to
specific CPU cores. xiRAID Opus goes beyond the
confines of Linux hosts, demonstrating adaptability by
facilitating straightforward portability to other operating
systems and seamless integration with specialized
hardware such as Data Processing Units (DPUs). xiRAID
Opus has built-in interfaces for accessing data from
virtual infrastructures: vhost SPDK, NVMe-oF™.

8. Summary
The testing aimed to assess the performance and
scalability of virtual machines (VMs) using xiRAID Opus
Vhost, focusing on I/O operations across multiple CPU
cores. Through various FIO benchmarks, including small
random reads and writes, mixed I/O, and large
sequential operations, the evaluation provided insights
into system performance under diverse workload
conditions. Notably, results revealed that each RAID
configuration could deliver close to one million IOps per
core with low latency. The single-VM RAID setup
exhibited exceptional latency levels below 100
microseconds, demonstrating superior performance
even under intense workloads or in degraded mode.
Additionally, sequential operations approached
theoretical maximums, ensuring high performance even
in case of a drive failure, thereby supporting the efficient
deployment of data-intensive applications within virtual
infrastructures.

In terms of performance, mdraid and kernel vhost target
significantly lag behind the xiRAID Opus. Additionally,
the inconsistency of certain settings greatly complicates
administration tasks. Mdraid demonstrates minimal
effectiveness in degraded mode, which is precisely the
scenario for which RAID exists.

All Rights Reserved © 2024

High Performance Storage Solution for Virtual Environment on Xinnor RAID Engine and Kioxia PCIe 5.0 Drives

All Rights Reserved © 2024

7

Appendix 2: mdraid
Configuration
On Each NUMA Node:

md0 : active raid5 nvme40n2[5] nvme45n2[3]
nvme36n2[2] nvme46n2[1] nvme35n2[0]

 12501939456 blocks super 1.2 level 5, 64k
chunk, algorithm 2 [5/5] [UUUUU]

Bitmaps disabled

cat /sys/block/md0/md/group_thread_cnt

16

Vhost target

Example Code for Launching VMs

taskset -a -c $CPU qemu-system-x86_64 -enable-kvm
-smp 8 -cpu host -m 32G -drive
file=$DISK_FILE,format=qcow2 --nographic \

-device vhost-scsi-
pci,wwpn=naa.5001405dc22c8c4e,bus=pci.0,addr=0x5

Appendix 1: Fio Configurations
Small Block operations

[global]

Set block size to 4 kilobytes

bs=4k

Enable direct I/O for bypassing the buffer cache

direct=1

Set the queue depth per thread/job to 32

iodepth=32

Run 6 parallel jobs

numjobs=6

Disable random map

norandommap=1

Enable group reporting for a summarized output

group_reporting

rw=randread/randwite/randrw

Use the Linear Feedback Shift Register generator
for random numbers

random_generator=lfsr

Use io_uring, a high-performance I/O engine

ioengine=io_uring

hipri=1

Fixed buffers option optimizes memory handling
during direct I/O

fixedbufs=1

Register the files with the kernel for more
efficient I/O operations

registerfiles=1

Sequential Operations

Job section for the device

[vda]

Specify the device file for the test

filename=/dev/vda

Fio Global Configuration

[global]

Set the block size for read/write operations.

bs=1M

Use direct I/O for bypassing the buffer cache

direct=1

Set the number of I/O operations that can be
queued per job

iodepth=32

numjobs=2

Aggregate and report I/O statistics for all jobs
together

group_reporting

Use the Linux-native asynchronous I/O facility

ioengine=libaio

Set the starting offset increment for each
subsequent job

offset_increment=20%

Device-specific configuration

[vda]

Define the device to test

filename=/dev/vda

Learn more at xinnor.io

request@xinnor.io

Learn more at kioxia.com

All Rights Reserved © 2024

