
Saturating InfiniBand
Bandwidth with xiRAID, to
Keep NVIDIA DGX Busy

All Rights Reserved © 2024 Xinnor

Contents
1. Objectives..

2. Test Setup..

 Testing Approach..

 RAID and File System Configuration...............................

 Possible Array Configuration Schemes...........................

 Aligned IO Description...

3. Performance Tests..

 I. Local Performance Testing...

 II. Network Performance Testing.....................................

 III. Non-aligned RAID Performance Testing....................

4. Conclusions...

Appendix 1. NFS Configuration...

Appendix 2. mkfs options description................................

Appendix 3. xfs mount options description........................

Appendix 4. /etc/exports options description.....................

Appendix 5. NFS mount options on the clients..................

2

2

2

2

3

4

4

4

4

6

6

7

7

7

8

8

Saturating InfiniBand Bandwidth with xiRAID, to Keep NVIDIA DGX Busy

All Rights Reserved © 2024 Xinnor

1

1. Objectives
Modern AI innovations require proper infrastructure,
especially concerning data throughput and storage
capabilities. While GPUs drive faster results, legacy
storage solutions often lag behind, causing inefficient
resource utilization and extended times in completing
the project. Traditional enterprise storage or HPC-
focused parallel file systems are costly and challenging
to manage for AI-scale deployments. High-performance
storage systems can significantly reduce AI model
training time. Delays in data access can also impact AI
model accuracy, highlighting the critical role of storage
performance.

Xinnor partnered with DELTA Computer Products GMBH,
a leading system integrator in Germany, to build a high-
performance solution designed specifically for AI and
HPC tasks. Thanks to the use of high-performance
NVMe drives from Micron, efficient software RAID from
Xinnor, and 400Gbit InfiniBand controllers from NVIDIA,
the system designed by Delta ensures a high level of
performance through NFSoRDMA interfaces, both for
read and write operations, that is crucial for reducing
checkpoint times typical of AI projects and for handling
possible drive failures. NFSoRDMA enables parallel
access for reading and writing from multiple nodes
simultaneously. The 2U dual sockets server used by
Delta and equipped with 24x 7450 NVMe 15.36 from
Micron allows storage of up to 368TB and provides
theoretical access speeds of up to 50GBps. In this
document we’ll explain how to set up the system with
xiRAID to saturate the InfiniBand bandwidth and provide
the best possible performance to NVIDIA DGX H100
systems.

In addition, we’ll showcase the capabilities of xiRAID
software. xiRAID represents a comprehensive software
RAID engine, offering a range of features tailored to
address diverse storage needs.

Finally, this report provides a detailed instruction
manual for achieving optimal and consistent
performance across various deployments.

Saturating InfiniBand Bandwidth with xiRAID, to Keep NVIDIA DGX Busy

All Rights Reserved © 2024 Xinnor

2

Client 1:

 NVIDIA DGX H10
 Intel(R) Xeon(R) Platinum 8480C
 2063937MB RA
 Network InfiniBand controller: Mellanox

Technologies MT2910 Family [ConnectX-7]

Client 2:

 NVIDIA DGX H10
 Intel(R) Xeon(R) Platinum 8480C
 2063937MB RA
 Network InfiniBand controller: Mellanox

Technologies MT2910 Family [ConnectX-7]

Testing Approach

We conducted tests of synchronous and asynchronous
file access modes to demonstrate the difference in
performance between the two approaches. Synchronous
mode means that the host receives confirmation of the
write only after the data has been written to the non-
volatile memory. This mode ensures data integrity and
more stable performance. In asynchronous mode, the
client receives confirmation of the write when the data is
saved in the page cache of the server. Asynchronous
mode is less sensitive to storage-level delays and thus to
array geometry, but it may provide an unstable level of
performance, varying depending on the level of cache
fill, and may lead to data loss in case of power outage
and lack of proper tools to protect the cache itself.

If supported by the application, Xinnor recommends
using synchronous mode.

RAID and File System Configuration

To achieve the best results in synchronous mode, it is
necessary to correctly configure the array geometry and
file system mounting parameters. In our case, we will
create 1 RAID50 array with 18 drives, with a chunk size
of 64k. For the journals, we will create a RAID1 from 2
drives (for each parity RAID), so that small log IOs will
not interfere with writing large data blocks. This
geometry allows us to aligne to 512kb blocks and
consequently, to achieve better sequential write results,
due to the reduced read-modify-write (RMW) operations.
The alternative to this configuration could be 2 RAID5
where each RAID belongs to the dedicated NUMA node.
In this testing we don’t see great value for NUMA affinity
approach, but in some server configurations it may
significantly help. It is worth mentioning that one xiRAID
software instance supports unlimited number of RAIDs.

2. Test Setup
 Motherboard: Giga Computing MZ93-FS
 CPU: 2xAMD EPYC 912
 RAM: 756G
 Storage: Micron 7450 (15.36TB) x 2
 Boot drives: Micron 7450 (960GB) x
 Network: NVIDIA ConnectX-7 400Gbi
 OS: Ubuntu 22.04.4 LTS (Jammy Jellyfish
 RAID: xiRAID 4.0.3

Saturating InfiniBand Bandwidth with xiRAID, to Keep NVIDIA DGX Busy 3

Figure 1. Example array for 1 shared folder

Possible Array Configuration Schemes

Scheme 1

Figure 2. First testing configuration

Two arrays are created for data from 9 drives in RAID 5
or 10 drives in RAID 6, and 2 mirrors for the logs. Two
file systems are created where RAID with parity is used
for data and mirror for the log. The file systems are
exported as two independent shared folders.

Pros

 Maximum performance, minimizing interaction via
inter-socket link

 If IO is a multiple of 256k, there are no RMW
operations

 Small IO does not affect performance stability.

Cons

 Only 16 drives out of 24 are used for data
 2 separate shared folders are needed.

Scheme 2 – the one used in this document

Figure 3. Second testing configuration

A single RAID50/60 is created from 18/20 drives and a
mirror of two drives. One file system (data + log) is
created and exported as a single shared folder.

Pros

 If IO is a multiple of 256k, there are no RMW
operations

 Unified data volume for all clients
 Small IO does not affect performance stability.

Cons

 Not all drives are used for data
 NUMA may affect overall performance.

Scheme 3

Figure 4. Third testing configuration

A single RAID50 or 60 is created with 24 drives. One file
system with internal logs is created and exported as 1
shared folder.

Pros

 The entire volume is allocated for data;

Cons

 Slightly higher latency, lower performance in
comparison with aligned IO.

Saturating InfiniBand Bandwidth with xiRAID, to Keep NVIDIA DGX Busy 4

Aligned IO Description

If the IO is not a multiple of the stripe size (for example,
if the IO is 256kb and the stripe consists of 12 drives with
a chunk size of 32kb), to update the checksums during
writing we have to read the old data state, the old
checksum state, recalculate, and write everything back.

The same situation occurs if the IO is equal to the stripe
size but not aligned to its boundary and is written with
an offset, then the RMW operation must be done for two
stripes.

If the IO is aligned, for example if we write 256kb on an
8+1 stripe, we can generate the checksum only from the
new data, and we do not need to read the old data and
parity states.

3. Performance Tests
We conducted performance tests of the array locally to
demonstrate its capabilities. Then we added the file
system to assess its impact and conducted tests with
clients over the network using NFSoRDMA protocols,
both with one and two clients, to evaluate scalability. To
understand the system's behavior in various scenarios,
we presented the test results in case of failures and in
asynchronous mode of NFS clients. Additionally, for
comparison, we conducted tests on a single unaligned
array to demonstrate the impact of such geometry on
the results.

I. Local Performance Testing

Testing Drives and Array

We conducted tests on the drives and array. Prior to that,
we needed to initialize the array. This is the FIO
configuration file:

Test results for scheme 2 (1 RAID50 of 18 drives for data
and 1 RAID1 of 2 drives for logs) are as follows:

Numjobs 1 4 8 16 32

Sequential write 1M,
GBps 10 26.9 39.8 57.9 84.1

Sequential read 1M,
GBps 37.6 100 132 132 139

The read performance is close to the theoretical
maximum for this workload.

At the same time, the write performance is very good,
greatly exceeding the capabilities of alternative solutions
available in the market.

Testing the Local File System

When testing the local file system, we can assess the
extent of its influence on the results. FIO configuration:

[globall]

bs=1024k

ioengine=libaio

rw=write

direct=1

group_reporting

time_based

runtime= 90

iodepth=32

exitall

[nvme1n1]

directory=/data

Now let's format and mount the file system:

mkfs.xfs -d su=64k,sw=8 -l logdev=/dev/
xi_log1,size=1G /dev/xi_xiraid -f -ssize=4k

The mount options look the following way:

/dev/xi_xiraid /data xfs logdev=/dev/
xi_log1,noatime,nodiratime,logbsize=256k,largeio,i
node64,swalloc,allocsize=131072k,x-
systemd.requires=xiraid-restore.service,x-
systemd.device-timeout=5m,_netdev 0 0

Numjobs 1 4 8 16 32

Sequential write, GBps 10 25.9 39.5 56.8 74.1

Sequential read, GBps 31.6 99 107 109 109

Thanks to xiRAID architecture we don’t see significant
impact on the results in comparison with previous test of
RAID block device. As well we demonstrate that
theoretically we can saturate all the network bandwidth.

II. Network Performance Testing

The NFS configuration file is available in Appendix 1.

The share parameters:

(/etc/exports

/data *(rw,no_root_squash,sync,insecure,no_wdelay)

Saturating InfiniBand Bandwidth with xiRAID, to Keep NVIDIA DGX Busy

All Rights Reserved © 2024 Xinnor

5

And on the client side, it's necessary to configure the
client driver parameters:

vim /etc/modprobe.d/nfsclient.conf

options nfs max_session_slots=180

mount -o
nfsvers=3,rdma,port=20049,sync,nconnect=16
10.10.10.254:/data /data1

We recommend using NFS v3 as it demonstrates more
stable results in synchronous mode. FIO configuration
on the client:

Synchronous Mode, Single Client Testing

Below are the results for single client performance
testing.

Numjobs 1 4 8 16 32

Sequential write, GBps 2 11,8 18,7 27,9 33,5

Sequential read, GBps 17,6 46,6 49,5 49,5 49,5

Write operations provide 3/4 of the network interface's
capabilities, while read operations offer the full potential
of the interface (50GB/s or 400Gbs). Writing is slower
than the interface results because in synchronous mode,
IO parallelization decreases due to the need to wait for
confirmation of the write on the drives.

Synchronous Mode, Single Client Testing, Degraded
Mode

It is also important to check the system's behavior in
degraded mode. Degraded mode is when one or more
drives are removed from the RAID.

Figure 5. Array status in degraded mode.

Numjobs 1 4 8 16 32

Sequential write, GBps 3,2 11,6 19 27,8 34,2

Sequential read, GBps 12,8 49,5 49,5 49,5 49,5

During one drive failure, no performance degradation is
observed, meaning that DGX H100 client will not suffer
any downtime.

Synchronous Mode, Two Clients Testing

Numjobs 1 4 8 16 32

Sequential write, GBps 5,3 14,5 20,3 26,3 30,2

Sequential read, GBps 20,3 46,2 49,5 49,5 49,5

Testing in synchronous mode demonstrates that write
performance increases for low jobs count with two
clients because of the increased workload from the
clients, while read performance remains the same as we
already reached the capabilities of a single-port 400 Gbit
interface (50GB/s).

Asynchronous Mode

Numjobs 1 4 8 16 32

Sequential write, GBps 5,7 20,2 21,4 27,6 33,2

Sequential read, GBps 12,2 36,9 49,5 49,5 49,5

During asynchronous operations, the performance
appears similar, but it might be unstable over time and
for this reason we recommend running in synchronous
mode whenever it is supported by the application.

Saturating InfiniBand Bandwidth with xiRAID, to Keep NVIDIA DGX Busy

All Rights Reserved © 2024 Xinnor

6

III. Non-aligned RAID Performance Testing

In some cases, it may be necessary to increase the
usable array capacity at the expense of some
performance reduction, or, if the client behavior is not
determined, there is no point or possibility in creating an
aligned RAID.

Using all drives for testing, we will create a RAID50 array
of 24 drives (scheme 3) and make some changes to the
file system creation and mounting parameters (see fig.
4). We will decrease the chunk size to 32k to reduce
stripe width. With this chunk size, we recommend using
write intensive drives to avoid performance degradation.

Numjobs 1 4 8 16 32

Sequential write, GBps 2,7 10,2 15,8 23,1 23,1

Sequential read, GBps 8,2 35,7 49,5 49,5 49,5

Write performance on single client with non-aligned
array is nearly one-third lower. Read operations are
similar to aligned arrays.

4. Conclusions
 The combination of NFSoverRDMA, xiRAID and

Micron 7450 NVMe SSD enables to create a high-
performance storage system capable of saturating
the network bandwidth in read operation and
ensuring fast flushing and checkpoint execution
(write at 3/4 of the interface capability), therefore
keeping DGX H100 busy with data and consequently
optimizing its usage

 Storage performance remains unaffected in case of
drive failures, eliminating the need for
overprovisioning resources and avoiding system
downtime

 Both synchronous and asynchronous operation
modes are supported, and the solution offers the
necessary set of settings to optimize performance for
various scenarios and load patterns.

Saturating InfiniBand Bandwidth with xiRAID, to Keep NVIDIA DGX Busy

All Rights Reserved © 2024 Xinnor

7

Appendix 1. NFS Configuration
NFS configuration file:

nfs.conf

[mountd]

debug=0

manage-gids=y

descriptors=0

port=0

 threads=64

reverse-lookup=n

state-directory-path=/var/lib/nfs

ha-callout=

#

[nfsdcld]

debug=0

storagedir=/var/lib/nfs/nfsdcld

#

[nfsdcltrack]

debug=0

storagedir=/var/lib/nfs/nfsdcltrack

#

[nfsd]

debug=0

 threads=64

host=

port=0

grace-time=90

lease-time=90

udp=n

tcp=y

vers2=n

vers3=y

 vers4=y

 vers4.0=y

 vers4.1=y

 vers4.2=y

 rdma=y

 rdma-port=20049

#

Appendix 2. mkfs options
description

 -d su=64k,sw=8: This option configures the data
section of the filesystem.

su=64k sets the stripe unit size to 64 kilobytes.
This is a hint to the filesystem about the
underlying storage's stripe unit, which can help
optimize performance for RAID configurations.

sw=8 sets the stripe width to 8 units. This
represents the number of stripe units across
which data is striped in a RAID array, and it's
used alongside su to inform the filesystem how
to optimally place data.

-

-

 -l logdev=/dev/xi_log1,size=1G: This option
configures the log section of the filesystem, which is
used for journaling.

logdev=/dev/xi_log1 specifies an external
device (/dev/xi_log1) for the filesystem's log.
Using a separate log device can improve
performance, especially on systems with high I/
O load.

size=1G sets the size of the log to 1 gigabyte.
The log size can affect the maximum
transaction size and the space available for
delayed logging, which can impact
performance.

-

-

 /dev/xi_xiraid: This is the device or partition on
which the XFS filesystem will be created.

 -f: This option forces the creation of the filesystem,
even if the device already contains a filesystem or is
in use. It's a precautionary flag to prevent accidental
overwrites, but it should be used with care.

 -s size=4k: This sets the sector size to 4 kilobytes.
The sector size is the smallest block of data that the
filesystem can manage. Adjusting this setting can
affect performance and space efficiency, especially
with small files.

Appendix 3. xfs mount options
description

 /dev/xi_xiraid: This is the device name or partition
that will be mounted.

 /data: This is the mount point, i.e., the directory in
the filesystem where the device will be mounted and
accessed.

 xfs: This specifies the filesystem type, in this case,
XFS.

 Mount Options: The comma-separated values are
options specific to how the filesystem should be
mounted:

-

-

-

logdev=/dev/xi_log1: Specifies an external log
device for the XFS filesystem, which is used for
journaling. This can improve performance by
separating the log activity from the data activity.

noatime, nodiratime: These options disable the
updating of access times for files and
directories when they are read. Disabling these
updates can improve performance because it
reduces write operations.

logbsize=256k: Sets the size of each in-
memory log buffer to 256 kilobytes. A larger log
buffer can reduce the number of disk I/O
operations required for logging but uses more
memory.

Saturating InfiniBand Bandwidth with xiRAID, to Keep NVIDIA DGX Busy

All Rights Reserved © 2024 Xinnor

8

-

-

-

-

-

-

-

largeio: Hints to the filesystem that large I/O
operations will be performed, which allows the
filesystem to optimize its I/O patterns.

inode64: Allows the filesystem to create inodes
at any location on the disk, including above the
2TB limit on 32-bit systems. This is useful for
large filesystems.

swalloc: Allocates space in a way that is
optimized for systems with a large number of
disks in a stripe (software RAID, for example),
potentially improving performance by spreading
out allocations.

allocsize=131072k: Sets the default allocation
size for file writes to 131072 kilobytes (128MB).
This can improve performance for large file
writes by reducing fragmentation.

x-systemd.requires=xiraid-restore.service:
Specifies a systemd unit dependency, indicating
that the xiraid-restore.service must be started
before the mount can proceed.

x-systemd.device-timeout=5m: Sets a timeout
of 5 minutes for the device to become available
before systemd gives up on mounting it. This is
useful for devices that may take a long time to
become ready.

_netdev: This option indicates that the
filesystem resides on a network device, which
tells the system to wait until the network is
available before attempting to mount the
filesystem.

 0 0: These are the dump and pass options,
respectively. The first zero indicates that the
filesystem will not be dumped (backed up) by the
dump utility. The second zero indicates the order in
which filesystem checks are done at boot time; a
value of 0 means that the filesystem will not be
checked at boot.

Appendix 4. /etc/exports
options description

 /data: This specifies the directory on the NFS server
that is being shared. In this case, /data is the shared
directory.

 *: This wildcard character specifies that any host can
access the shared directory. It means the export is
not restricted to specific IP addresses or hostnames.

 (rw,no_root_squash,sync,insecure,no_wdelay):
These are the options for the shared directory, each
affecting how the directory is accessed and managed
across the network:

-

-

-

-

-

rw: This option allows read and write access to
the shared directory. Without specifying this,
the default would be read-only access.

no_root_squash: By default, NFS translates
requests from the root user remotely into a
non-privileged user on the server (root squash).
The no_root_squash option disables this
behavior, allowing the root user on a client
machine to have root privileges when accessing
the shared filesystem on the NFS server. This
can be useful but poses a security risk as it
allows the root user on a client to access files
as root on the server.

sync: Ensures that changes to the filesystem
are written to disk before the command
returns. The opposite is async, where NFS may
respond to file requests before the data is
written. While sync can decrease performance,
it increases data integrity in case of a crash.

insecure: Allows connections from clients
using ports higher than 1024. By default, NFS
expects to communicate over lower numbered,
privileged ports which are typically below 1024.
The insecure option is often required for clients
that cannot bind to the privileged ports,
commonly due to the client's security policy.

no_wdelay: Disables write delays. NFS has a
write delay feature that allows it to collect
multiple write requests to contiguous disk
blocks into one larger write request.

Appendix 5. NFS mount
options on the clients

 nfsvers=3: This option specifies the version of the
NFS protocol to use. nfsvers=3 indicates that NFS
version 3 should be used for the connection.

 rdma: This option indicates that the Remote Direct
Memory Access (RDMA) protocol should be used for
data transmission. RDMA allows for high-throughput,
low-latency networking, which is particularly useful
in environments requiring fast access to remote
storage.

 port=20049: Specifies the TCP port number on which
the NFS server is listening. The default NFS port is
2049, but this option is used to connect to a server
that has been configured to listen on a different port,
in this case, 20049.

Saturating InfiniBand Bandwidth with xiRAID, to Keep NVIDIA DGX Busy

All Rights Reserved © 2024 Xinnor

9

 sync: This option forces the NFS client to use
synchronous writes. With sync, data is written to the
disk before the write operation is considered
complete. This can ensure data integrity but might
reduce performance compared to asynchronous
writes.

 nconnect=16: This is an option that allows the NFS
client to establish multiple connections to the server.
nconnect=16 means that up to 16 parallel
connections can be used.

 10.10.10.254:/data: This specifies the remote NFS
share to be mounted. 10.10.10.254 is the IP address
of the NFS server, and /data is the path to the
directory on the server that is being shared.

 /data1: This is the local mount point. It's the
directory on the local system where the remote NFS
share will be mounted and accessed.

Learn more about us at xinnor.io

request@xinnor.io

+972 43 740 203

All Rights Reserved © 2024 Xinnor

