
High Performance Storage
Solution for PostgreSQL
Database in Virtual
Environment

Boosted by xiRAID Engine and Kioxia
PCIe5 Drives

March 1, 2024

All Rights Reserved © 2024 Xinnor

1. Objectives 2. Test Setup
PostgreSQL is a highly popular open-source database
due to its rich feature set, robust performance, and
flexible data handling. It is used everywhere from small
websites to large-scale enterprise applications,
attracting users with its object-relational capabilities,
advanced indexing, and strong security. However, to truly
unleash its potential, PostgreSQL demands fast storage.
Its transactional nature and ability to handle large
datasets require low latency and high throughput. This is
why pairing PostgreSQL with fast storage solutions is
crucial for optimizing performance, minimizing
downtime, and ensuring seamless data access for
demanding workloads.

For flexibility, scalability and cost optimization, it is
preferrable to run PostgreSQL on Virtual Machines,
especially in development and testing environments. But
sometimes, Virtualization introduces an abstraction
layer that can lead to performance overhead compared
to running directly on bare metal. On the other hand,
using just bare metal leads to non-optimal usage of the
CPU and storage resources, because one application
typically doesn’t fully utilize the bare metal server
performance.

In this document, we’ll look at the optimal way to provide
high performance to PostgreSQL in a virtualized
environment.

With this goal, we are comparing the performance of
vHOST Kernel Target with Mdadm against SPDK vhost-
blk target protected by Xinnor’s xiRAID Opus.

Mdadm, which stands for "Multiple Devices
Administration", is a software tool used in Linux systems
to manage software RAID (Redundant Array of
Independent Disks) configurations. Unlike hardware
RAID controllers, mdadm relies on the computer's CPU
and software to achieve data redundancy and
performance improvements across multiple physical
disks.

xiRAID Opus (Optimized Performance in User Space) is a
high-performance software RAID engine based on the
SPDK libraries, designed specifically for NVMe storage
devices.

We are focusing the benchmark on software RAID, as
hardware RAID has only 16 PCIe lanes, meaning that by
the design the performance is limited to the one of
maximum 4 NVMe drives per controller, which is not
sufficient for PostgreSQL applications.

As testing tool, we employed the pgbench utility and
conducted tests on all three built-in scripts: tpcb-like,
simple-update, and select-only. The script details are
provided in Appendix 2.

Hardware Configuration:�

Software Configuration:�

RAID Configuration:

Summary of Resources Allocated:�

� Motherboard: Supermicro H13DSH�
� CPU: Dual AMD EPYC 9534 64-Core Processors�
� Memory: 773,672 MB�
� Drives: 10xKIOXIA KCMYXVUG3T20

� OS: Ubuntu 22.04.3 LTS�
� Kernel: Version 5.15.0-91-generic�
� xiRAID Opus: Version xnr-1077�
� QEMU Emulator: Version 6.2.0

Two RAID groups (4+1 configuration) were created
utilizing drives on 2 independent NUMA nodes. The
stripe size was set to 64K. A full RAID initialization was
conducted prior to benchmarking.

Each RAID group was divided into 7 segments, with each
segment being allocated to a virtual machine via a
dedicated vhost controller.

� RAID Groups: 2�
� Volumes: 14�
� vhost Controllers: 14�
� VMs: 14, with each using segmented RAID volumes

as storage devices.

During the creation of mdraid, volumes, and vhost
targets, assignment to specific CPU cores was not
conducted because not supported. Nevertheless, virtual
machines continued to operate on specific cores.

Figure 1. Distribution of virtual machines, vhost controllers, RAID groups
and NVMe drives

High Performance Storage Solution for PostgreSQL Database in Virtual Environment Boosted by xiRAID Engine and Kioxia PCIe5 Drives

All Rights Reserved © 2024 Xinnor

1

NUMA 0

NVME0 NVME1 NVME2 NVME3 NVME4

RAID 5_0

VOLUME 6

VHOST CONTROLLERVHOST CONTROLLER

VOLUME 0

VM VM VM VM VM VM VM

NUMA 1

NVME5 NVME6 NVME7 NVME8 NVME9

RAID 5_1

VOLUME 6

VHOST CONTROLLERVHOST CONTROLLER

VOLUME 0

VM VM VM VM VM VM VM

3. Testing

With xiRAID, it is possible to assign the RAID engine to
specific cores. In this example we are using 8 cores for
any NUMA node. Such placement allows to separate
infrastructure and database workload, and to isolate VM
loads from each other.

This feature is not available on MDRAID, so the
application must share the core resources with the RAID
engine.

CPU Allocation: 8
(-cpu host -smp 8)

QEMU Memory Configuration:

Memory Allocation: Each VM is provisioned with 32 GB
of RAM via Hugepages. Memory is pre-allocated and
bound to the same NUMA node as the allocated vCPUs
to ensure efficient CPU-memory interaction.

Virtual Machine Configuration

Configuring the folder for the data:

We created and initialized the database for testing
purposes. It is important to choose the scaling correctly,
so that all data does not fit into the RAM.

We conducted tests while varying the number of clients
and reported in this document only those where we
achieved the maximum stable results. To adjust the
number of clients, we selected the following values for
the parameter -c (number of clients simulated, equal to
the number of concurrent database sessions): 10, 20, 50,
100, 200, 500, 1000. For all script types, we reached a
plateau at 100 clients.

As best practice, we fixed the parameter -j (number of
worker threads within pgbench*) equal to the number of
VM cores.

The tests appear as follows:

We conducted the test three times and recorded the
average results across all virtual machines. Additionally,
we performed select-only tests in degraded mode, as
this script generates the maximum load on reading,
enabling an assessment of the maximum impact on the
database performance.

During the test, we monitored the array performance
using the iostat utility. The total server performance
comprises the sum of the performance of all machines
(14 for xiRAID Opus and 16 for mdraid).

High Performance Storage Solution for PostgreSQL Database in Virtual Environment Boosted by xiRAID Engine and Kioxia PCIe5 Drives 2

Core 1

CCD 0

Core 0

Core 2

Core 3

Core 4

Core 5

VM 1 VM 2 VM 3 VM 4 VM 5 VM 6 VM 7

Core 6

Core 7

CCD 1 CCD 2 CCD 3 CCD 4 CCD 5 CCD 6 CCD 7

VM 1 VM 2 VM 3 VM 4 VM 5 VM 6 VM 7

VM 1

VM 1

VM 1

VM 1

VM 1

VM 1

VM 2

VM 2

VM 2

VM 2

VM 2

VM 2

VM 3

VM 3

VM 3

VM 3

VM 3

VM 3

VM 4

VM 4

VM 4

VM 4

VM 4

VM 4

VM 5

VM 5

xiRAID

VM 5

VM 5

VM 5

VM 5

VM 6

VM 6

VM 6

VM 6

VM 6

VM 6

VM 7

VM 7

VM 7

VM 7

VM 7

VM 7

xiRAID

xiRAID

xiRAID

xiRAID

xiRAID

xiRAID

xiRAID

Core 1

CCD 0

Core 0

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

CCD 1 CCD 2 CCD 3 CCD 4 CCD 5 CCD 6 CCD 7

VM 1 /
mdraid

VM 2 /
mdraid

VM 3 /
mdraid

VM 4 /
mdraid

VM 5 /
mdraid

VM 6 /
mdraid

VM 7 /
mdraid

VM 8 /
mdraid

VM 1 /
mdraid

VM 2 /
mdraid

VM 3 /
mdraid

VM 4 /
mdraid

VM 5 /
mdraid

VM 6 /
mdraid

VM 7 /
mdraid

VM 8 /
mdraid

VM 1 /
mdraid

VM 2 /
mdraid

VM 3 /
mdraid

VM 4 /
mdraid

VM 5 /
mdraid

VM 6 /
mdraid

VM 7 /
mdraid

VM 8 /
mdraid

VM 1 /
mdraid

VM 2 /
mdraid

VM 3 /
mdraid

VM 4 /
mdraid

VM 5 /
mdraid

VM 6 /
mdraid

VM 7 /
mdraid

VM 8 /
mdraid

VM 1 /
mdraid

VM 2 /
mdraid

VM 3 /
mdraid

VM 4 /
mdraid

VM 5 /
mdraid

VM 6 /
mdraid

VM 7 /
mdraid

VM 8 /
mdraid

VM 1 /
mdraid

VM 2 /
mdraid

VM 3 /
mdraid

VM 4 /
mdraid

VM 5 /
mdraid

VM 6 /
mdraid

VM 7 /
mdraid

VM 8 /
mdraid

VM 1 /
mdraid

VM 2 /
mdraid

VM 3 /
mdraid

VM 4 /
mdraid

VM 5 /
mdraid

VM 6 /
mdraid

VM 7 /
mdraid

VM 8 /
mdraid

VM 1 /
mdraid

VM 2 /
mdraid

VM 3 /
mdraid

VM 4 /
mdraid

VM 5 /
mdraid

VM 6 /
mdraid

VM 7 /
mdraid

VM 8 /
mdraid

Figure 2. xiRAID. Placement of the array and VMs on cores Figure 3. mdraid. Placement of the array and VMs on cores

* Using more than one thread can be helpful on multi-CPU machines.
Clients are distributed as evenly as possible among available threads.

-m 32G -object memory-backend-file,id=mem,
size=32G,mem-path=/dev/hugepages,share=on,
prealloc=yes,host-nodes=0,policy=bind

sudo -u postgres createdb test

sudo -u postgres pgbench -i -s 50000 test

sudo -u postgres pgbench -j 8 -c 100 -b select-
only -T 200 test

sudo -u postgres pgbench -j 8 -c 100 -b simple-
update -T 200 test

sudo -u postgres pgbench -j 8 -c 100 -T 200 test

apt-get install postgresql-15

cd /etc/postgresql/15/main/

sed -i 's|/var/lib/postgresql/15/main|/test/
postgresql/15/main|g' postgresql.conf

sed -i -e "s/^#\?
\s*listen_addresses\s*[=]\s*[^\t#]*/
listen_addresses = '127.0.0.1'/" postgresql.conf

sed -i -e "/^max_connections/s/[=][^\t#]*/ =
'300'/" postgresql.conf

apt-get install xfsprogs

mkdir /test

mkfs.xfs /dev/vda -f

mount /dev/vda /test -o
discard,noatime,largeio,inode64,swalloc,allocsize=
64M -t xfs

cp -rp /var/lib/postgresql /test/

service postgresql restart

// installing
PostgreSQL 15

//
configuring the folder for the data

// increasing the number
of connections up to 300

Operating System: VMs run Debian GNU/Linux 12
(Bookworm)

PostgreSQL Version: 15

PostgreSQL Configuration

Select-only Test Results

Select-only Test Results, Degraded Mode

Simple-update Test Results

TPC-B-like Test Results

High Performance Storage Solution for PostgreSQL Database in Virtual Environment Boosted by xiRAID Engine and Kioxia PCIe5 Drives 3

Test 1 VM Performance Latency

the lower, the better

Total Server
Performance

xiRAID: 14 VMs,

mdraid: 16 VMs

Load on RAID, IOps

select-only, xiraid 110K tps 0.9 ms 1540K tps 1963K IOps

ratio 1.44 0.7 1.28 1.29

select-only,
mdraid

76K tps 1.3 ms 1216K tps 1524K IOps

Test 1 VM Performance Latency

the lower, the better

Total Server
Performance

xiRAID: 14 VMs,

mdraid: 16 VMs

Load on RAID, IOps

Test 1 VM Performance Latency

the lower, the better

Total Server
Performance

xiRAID: 14 VMs,

mdraid: 16 VMs

Load on RAID, IOps

simple-update,
xiraid

26K tps 3.8 ms 364K tps 910K IOps

Test 1 VM Performance Latency

the lower, the better

Total Server
Performance

xiRAID: 14 VMs,

mdraid: 16 VMs

Load on RAID, IOps

ratio 6 0.17 5.29 6.8

select-only, xiraid,
degraded mode

112K tps 0.9 ms 1568K tps 1952K IOps

simple-update,
mdraid

4.3K tps 23 ms 69K tps 134K IOps

tpc-b-like, xiraid 21K tps 5 ms 294K tps
451K read +

621K write

ratio 24.5 0.04 20.9 25

ratio 5.25 0.2 4.9 5.1

select-only,
mdraid, degraded
mode

4.6K tps 22 ms 74K tps 78K IOps

tpc-b-like, mdraid 4K tps 25 ms 64K tps
88K read +

121K write

All Rights Reserved © 2024 Xinnor

4. Conclusion
1. In select-only, with all the drives in the RAID operating
properly, xiRAID Opus provides 30-40% better
transaction per second than mdraid. Mdraid is nearing
its maximum capabilities, and further scaling (by
increasing the number of cores for virtual machines)
would become challenging. This is not the case for
xiRAID. The main reason for such a difference is the fact
that xiRAID Opus enables the vhost target to run on a
separate CCD.

When comparing different protection schemes, we
cannot stop at measuring performance in normal
operation. Indeed, RAID protection is needed to prevent
data loss in case of one or more drives failure. In this
situation (degraded mode), maintaining high
performance is critical to avoid downtime to the
database users.

When comparing performance in degraded mode,
mdraid experiences a significant drop in performance,
leading to over 20X times slower performance than
xiRAID. In other terms, with MDRAID, users will be
waiting for their data and this situation can lead to
business losses (think about an online travel agency or a
trading company).

2. When it comes to writing data to the database, each
write of small blocks generates RAID calculations. In
this situation, mdraid's performance is six times worse
than xiRAID Opus.

3. The TPC-B Like script is more complex than the
simple update and consumes more CPU resources,
which again slows down mdraid on write operations. In
this case, xiRAID outpaces mdraid by five times.

4. In conclusion, xiRAID provides great and stable
performance to multiple VMs.

This means that applications will be able to get access to
their data without any delay, even in case of drive
failures or extensive write operations.

Furthermore, the scalability of xiRAID on VMs allows the
system admin to consolidate the number of servers
needed for large/multiple Database deployments. This
benefit oversimplifies the storage infrastructure while
providing great cost saving.

High Performance Storage Solution for PostgreSQL Database in Virtual Environment Boosted by xiRAID Engine and Kioxia PCIe5 Drives

All Rights Reserved © 2024 Xinnor

4

Appendix 1. mdraid
Configuration

Appendix 2. Scripts
Description

On each NUMA node

Example Code for Launching VMs

The default built-in transaction script (also invoked with
-b tpcb-like) issues seven commands per transaction
over randomly chosen aid, tid, bid and delta. The
scenario is inspired by the TPC-B benchmark, but is not
actually TPC-B, hence the name.

If you select the simple-update built-in (also -N), steps 4
and 5 aren't included in the transaction. This will avoid
update contention on these tables, but it makes the test
case even less like TPC-B.

If you select the select-only built-in (also -S), only the
SELECT is issued.

High Performance Storage Solution for PostgreSQL Database in Virtual Environment Boosted by xiRAID Engine and Kioxia PCIe5 Drives

All Rights Reserved © 2024 Xinnor

5

md0 : active raid5 nvme40n2[5] nvme45n2[3]
nvme36n2[2] nvme46n2[1] nvme35n2[0]

 12501939456 blocks super 1.2 level 5, 64k
chunk, algorithm 2 [5/5] [UUUUU]

taskset -a -c $CPU qemu-system-x86_64 -enable-kvm
-smp 8 -cpu host -m 32G -drive
file=$DISK_FILE,format=qcow2 --nographic \

-device vhost-scsi-
pci,wwpn=naa.5001405dc22c8c4e,bus=pci.0,addr=0x5

1.	BEGIN;

2.	UPDATE pgbench_accounts SET abalance = abalance
+ :delta WHERE aid = :aid;

3.	SELECT abalance FROM pgbench_accounts WHERE aid
= :aid;

4.	UPDATE pgbench_tellers SET tbalance = tbalance
+ :delta WHERE tid = :tid;

5.	UPDATE pgbench_branches SET bbalance = bbalance
+ :delta WHERE bid = :bid;

6.	INSERT INTO pgbench_history (tid, bid, aid,
delta, mtime) VALUES (:tid, :bid, :aid, :delta,
CURRENT_TIMESTAMP);

7.	END;

Bitmaps disabled

cat /sys/block/md0/md/group_thread_cnt

16

Vhost target

Learn more about us at xinnor.io

request@xinnor.io

+972 43 740 203

All Rights Reserved © 2024 Xinnor

