
Optimize
Utilization &
Reliability for
High-
Performance
Distributed
Database Apps

App note

With CSD 3310 SSDs and Xinnor xiRAID

Optimize Utilization and Reliability for High-Performance Distributed Database Apps

 2

www.xinnor.io

www.scaleflux.com

Table of Contents
1 About This Document .. 3

2 Motivation .. 3

3 Test Setup ... 3

3.1 xiRAID Setup .. 3

3.2 Aerospike Certification Tool Setup ... 4

4 Test Execution and Results ... 6

5 Conclusion ... 9

https://xinnor.io/
mailto:info@hyperscalers.com
mailto:info@hyperscalers.com
https://www.scaleflux.com/
mailto:sales@scaleflux.com

Optimize Utilization and Reliability for High-Performance Distributed Database Apps

 3

www.xinnor.io

www.scaleflux.com

1 About This Document
In this application note, we evaluate the feasibility of using Xinnor® xiRAID™ with ScaleFlux® CSD
3310 NVMe® SSDs in latency-sensitive distributed database applications. We use the Aerospike®
certification tool (ACT) for SSDs to evaluate the latency response of an xiRAID level five array
(distributed parity with single disk failure protection) using five CSD 3310 7.8TB SSDs.

2 Motivation
Xinnor's xiRAID is a flexible, high-performance software RAID solution ideally suited to the high
IOPS and low latency provided by modern NVMe storage. When evaluating a RAID solution,
evaluating the performance of the RAID array in the degraded state (one or more drives in the
array is not functioning) and reconstructing state (one or more new drives added to the array)
is just as critical as evaluating operation in the normal state. In the degraded state, fewer drives
are available to serve IO requests. In the reconstructing state, intra-RAID IO adds traffic as data
on good disks is used to reconstruct the data to the newly introduced disks. A key feature
provided by xiRAID is the ability to control the rate of array reconstruction, enabling a
predictable reconstruction workload sized to ameliorate contention with host IO. The ScaleFlux
CSD 3310 NVMe SSDs feature transparent inline compression that also lowers the impact of
intra-RAID reconstruction IO. By transparently compressing data written to the SSD, additional
media bandwidth is available for reads. This capability allows the CSD 3310 to maintain a lower
read latency profile in the presence of reconstruction IO. Combining these technologies
enables a best-in-class software RAID solution capable of servicing high-performance
workloads under all RAID operating states.

3 Test Setup
The test system consists of a dual-socket Xeon Gold 6342 CPU with 48 physical cores and 512GB
of DRAM, installed with five 7.68TB ScaleFlux CSD 3310 PCIe® Gen 4 SSDs. The operating system
is Ubuntu 22 with kernel version 5.15.0-70.

3.1 xiRAID Setup
Xinnor xiRAID is installed from the Xinnor official release repository using ̀ sudo apt install xiraid-
release`. The xicli utility manages all aspects of the RAID array. To create the RAID 5 array, use
the following command:

$ sudo xicli raid create -n sfxtest -l 5 -d /dev/nvme0n1 /dev/nvme1n1 /dev/nvme2n1
/dev/nvme3n1 /dev/nvme4n1

Next, we adjust the reconstruction priority down to 10%. This adjustment limits the maximum
throughput consumed during RAID rebuild such that host IO latency impact is minimized:

$ sudo xicli raid modify -n sfxtest --recon-prio=10

https://xinnor.io/
mailto:info@hyperscalers.com
mailto:info@hyperscalers.com
https://www.scaleflux.com/
mailto:sales@scaleflux.com

Optimize Utilization and Reliability for High-Performance Distributed Database Apps

 4

www.xinnor.io

www.scaleflux.com

To view a basic summary of the RAID array, use the `show` command:

$ xicli raid show
╔RAIDs════╦══════════════════╦═════════════╦═════════

══════════════╦════════════════════════╗
║ name ║ static ║ state ║ devices ║ info ║
╠═════════╬══════════════════╬═════════════╬═══════

════════════════╬════════════════════════╣
║ sfxtest ║ size: 28615 GiB ║ online ║ 0 /dev/nvme0n1 online ║ memory_usage_mb : - ║
║ ║ level: 5 ║ initialized ║ 1 /dev/nvme1n1 online ║ ║
║ ║ strip_size: 16 ║ ║ 2 /dev/nvme2n1 online ║ ║
║ ║ block_size: 4096 ║ ║ 3 /dev/nvme3n1 online ║ ║
║ ║ sparepool: - ║ ║ 4 /dev/nvme4n1 online ║ ║
║ ║ active: True ║ ║ ║ ║
║ ║ config: True ║ ║ ║ ║
╚═════════╩══════════════════╩═════════════╩═══════

════════════════╩════════════════════════╝

To provide additional information in a similar format, including the reconstruction priority
setting, use the -e option with `show`

3.2 Aerospike Certification Tool Setup
The Aerospike certification tool (ACT) is available on GitHub. This tool generates a workload at
a specified transactions per second (TPS) target and monitors the tail latency of all
transactions. If all transactions are complete while meeting all the latency goals, the test
passes at that TPS level. The essential latency goal is that at most 5% of transactions exceed 1
millisecond.

In the Aerospike IO architecture, the number of threads depends on the number of CPU cores
available and the number of drive partitions. Divide the RAID array into 16 partitions to increase
parallelism:

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
xi_sfxtest 259:8 0 27.9T 0 disk
├─xi_sfxtest1 259:9 0 1.7T 0 part
├─xi_sfxtest2 259:10 0 1.7T 0 part
├─xi_sfxtest3 259:11 0 1.7T 0 part
├─xi_sfxtest4 259:12 0 1.7T 0 part
├─xi_sfxtest5 259:13 0 1.7T 0 part
├─xi_sfxtest6 259:14 0 1.7T 0 part
├─xi_sfxtest7 259:15 0 1.7T 0 part
├─xi_sfxtest8 259:16 0 1.7T 0 part
├─xi_sfxtest9 259:17 0 1.7T 0 part

https://xinnor.io/
mailto:info@hyperscalers.com
mailto:info@hyperscalers.com
https://www.scaleflux.com/
mailto:sales@scaleflux.com

Optimize Utilization and Reliability for High-Performance Distributed Database Apps

 5

www.xinnor.io

www.scaleflux.com

├─xi_sfxtest10 259:18 0 1.7T 0 part
├─xi_sfxtest11 259:19 0 1.7T 0 part
├─xi_sfxtest12 259:20 0 1.7T 0 part
├─xi_sfxtest13 259:21 0 1.7T 0 part
├─xi_sfxtest14 259:22 0 1.7T 0 part
├─xi_sfxtest15 259:23 0 1.7T 0 part
└─xi_sfxtest16 259:24 0 1.7T 0 part

This evaluation sets the TPS level to 1.5 million with a 2:1 read-to-write ratio. Use the compress-
pct parameter to configure compressibility. In this case, the configuration achieves
approximately a 2:1 compression ratio on disk. The read object size is 1.5kB, but there are also
large (128kB) reads and writes performed in parallel to simulate other database processes. The
complete configuration file is as follows.

ACT-storage config file.

Mandatory device name(s) as comma-separated list:
device-names: /dev/xi_sfxtest1,/dev/xi_sfxtest2,/dev/xi_sfxtest3,/dev/xi_sfxtest4,/dev/xi_sfxtest5,\
/dev/xi_sfxtest6,/dev/xi_sfxtest7,/dev/xi_sfxtest8,/dev/xi_sfxtest9,/dev/xi_sfxtest10,\
/dev/xi_sfxtest11,/dev/xi_sfxtest12,/dev/xi_sfxtest13,/dev/xi_sfxtest14,/dev/xi_sfxtest15, \
/dev/xi_sfxtest16

Mandatory non-zero test duration:
test-duration-sec: 172800

#---------------------------------------
Transaction request rates.

The standard "1x" load is 1000 writes and 2000 reads per second. To generate
a standard "Nx" load, multiply these numbers by N. If testing with more than
one device, also multiply by the number of devices. (The configured rates are
spread across all devices in the test.)

read-reqs-per-sec: 1000000
write-reqs-per-sec: 500000

#---------------------------------------
Items with default values.

All remaining configuration items are shown below with default values. To try
non-default values, just un-comment the relevant items and change the values.

https://xinnor.io/
mailto:info@hyperscalers.com
mailto:info@hyperscalers.com
https://www.scaleflux.com/
mailto:sales@scaleflux.com

Optimize Utilization and Reliability for High-Performance Distributed Database Apps

 6

www.xinnor.io

www.scaleflux.com

See README.md for more information.

service-threads: 40? # default is 5x detected number of CPUs
report-interval-sec: 1
microsecond-histograms: no
record-bytes: 1536
record-bytes-range-max: 0
large-block-op-kbytes: 128
replication-factor: 1
update-pct: 0
defrag-lwm-pct: 50
compress-pct: 40
disable-odsync: no
commit-to-device: no
commit-min-bytes: 512? # default is detected minimum device IO size
tomb-raider: no
tomb-raider-sleep-usec: 0
max-lag-sec: 10
scheduler-mode: noop

4 Test Execution and Results
The ACT workload is applied continuously to measure RAID array performance under four
different conditions:

1. Normal operation, followed by a surprise removal of a drive from the array.
2. A surprise removal of the drive, followed by continued operation in the degraded state.
3. Adding an empty drive back into the array and operation in the reconstructing state.
4. Normal operation after full reconstruction.

Ideally, the host should not observe a difference in IO performance between these four states.
In the following plot, we observe the read and write throughputs and total system (kernel) CPU
utilization across all states:

https://xinnor.io/
mailto:info@hyperscalers.com
mailto:info@hyperscalers.com
https://www.scaleflux.com/
mailto:sales@scaleflux.com

Optimize Utilization and Reliability for High-Performance Distributed Database Apps

 7

www.xinnor.io

www.scaleflux.com

The total read and write throughput are constant (at 5.4GB/s and 1.7GB/s, respectively). There
is a slight decline in CPU utilization while the array reconstructs.

Similarly, the tail latency remains remarkably low through all states:

https://xinnor.io/
mailto:info@hyperscalers.com
mailto:info@hyperscalers.com
https://www.scaleflux.com/
mailto:sales@scaleflux.com

Optimize Utilization and Reliability for High-Performance Distributed Database Apps

 8

www.xinnor.io

www.scaleflux.com

Taking a closer look at the reconstruction phase, the read and write throughput of a normal
drive and the drive under reconstruction is measured:

The non-repairing disk write throughput remains constant but serves a higher read throughput
as it contributes to the data on the reconstructing disk. The volume of data read from the non-
repairing disk decreases as reconstruction progresses as the repairing disk continues to serve
data. At the end of the reconstruction phase, both disks contribute equally to the workload.

To monitor the reconstruction progress, use the `show` command (the output below is a partial
view of the output.

$ xicli raid show
~╦════════════════╦═══════════════════════════

═══════════╦═════════════════════════╗
~║ state ║ devices ║ info ║
~╬════════════════╬═══════════════════════════

═══════════╬═════════════════════════╣
~║ online ║ 0 /dev/nvme0n1 online ║ recon_progress : 80 ║
~║ degraded ║ 1 /dev/nvme1n1 online ║ memory_usage_mb : - ║
~║ reconstructing ║ 2 /dev/nvme2n1 online ║ ║
~║ initialized ║ 3 /dev/nvme3n1 online ║ ║
~║ ║ 4 /dev/nvme4n1 online,reconstructing ║ ║
~║ ║ ║ ║

https://xinnor.io/
mailto:info@hyperscalers.com
mailto:info@hyperscalers.com
https://www.scaleflux.com/
mailto:sales@scaleflux.com

Optimize Utilization and Reliability for High-Performance Distributed Database Apps

 9

www.xinnor.io

www.scaleflux.com

~║ ║ ║ ║
~╩════════════════╩═══════════════════════════

═══════════╩═════════════════════════╝

5 Conclusion
Maintaining consistent performance and low latency requires that the impact of the added IO
traffic due to reconstruction does not affect host IO performance. Combining xiRAID's tunable
reconstruction priority and minimizing the impact of reconstruction traffic through transparent
compression combine to provide a consistently low impact on host IO performance.

With a high-performance and resilient RAID array suitable for low-latency applications,
deploying a RAID solution can reduce the probability of node failure and avoid costly node-
level rebuilds. Furthermore, the increased node data reliability may make it feasible to reduce
the amount of node-level redundancy. For example, deploying double replication in place of
triple replication. Such an implementation would reduce server count and rack space, lower
network utilization, and decrease the quantity of any required node-level licenses.

https://xinnor.io/
mailto:info@hyperscalers.com
mailto:info@hyperscalers.com
https://www.scaleflux.com/
mailto:sales@scaleflux.com

Xinnor is an Israeli-based software
development company that specializes
in creating innovative data storage
solutions. Our main product is xiRAID, a
patented software RAID technology that
delivers exceptional performance. xiRAID
is a product of a decade of math
research, unique algorithms of data
protection and in-depth knowledge of
modern CPU operation. Although it works
with all types of storage devices, xiRAID
really shines when deployed together
with NVMe® or NVMe-oF™ devices. xiRAID
is the only software solution in the market
capable of driving up to 97% of raw
device performance in computationally
heavy RAID configurations, while
maintaining a very modest load on the
host CPU and low memory footprint.

About Xinnor The fastest
and most
reliable
software RAID

ScaleFlux helps customers harness data
growth as a competitive advantage by
building products that reduce complexity
and accelerate the creation of value from
data. In our first phase of rethinking the
data pipeline for the modern data center,
ScaleFlux has built a better SSD by
embedding computational storage
technology into flash drives. Now,
customers can gain an edge, optimizing
their data center infrastructure by
deploying storage intelligence for
workloads like databases, analytics, IoT,
and 5G.

About
ScaleFlux+972 43 740 203

request@xinnor.io

sales@scaleflux.com

www.scaleflux.com

www.xinnor.io

The Better
SSD delivered
to your door.

https://www.linkedin.com/company/xinnor/
https://www.linkedin.com/company/scaleflux
https://twitter.com/ScaleFlux
https://www.youtube.com/channel/UCAIYc-hln53AaxElmPOFo3g
mailto:request@xinnor.io
https://www.scaleflux.com/
https://xinnor.io/
https://xinnor.io/

